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A B S T R A C T  

Advances in computing technology, over the past decades, allowed the development of a number of different History 

Matching (HM) techniques. Nevertheless, the simultaneous integration of production data under geological consistency, as 

part of the reservoir modelling workflow, still remains a challenge.  

A geologically consistent approach aims to avoid solutions that are unrealistic under the reservoir’s general geological 

characteristics. Unrealistic HM solutions often result in poor reservoir response forecasting. It is also essential to include 

only geologically realistic models for uncertainty assessment based on multiple models that are consistent with the 

geological data and also in order to match observed production history.  

Geostatistical History Matching (GHM) can iteratively update static reservoir model properties through conditional 

assimilation constrained to the production data, using geologically consistent perturbation. Multiple stochastic realizations 

are assimilated following a zonation approach to account for the local match quality, providing a way to integrate 

regionalized discretization of parameters with production data and engineering knowledge.  

The present project proposes a new HM technique applied in uncertain reservoir conditions represented by geologically 

consistent reservoir zonation, based on fault presence and production streamlines. The work explores the value of using a 

geologically consistent zonation associated with production wells in GHM regions, coupled with adaptive stochastic 

sampling and Bayesian inference for uncertainty quantification and optimization of geological and engineering properties. 

This novel approach makes use of the Direct Sequential Simulation (DSS) algorithm for generation of stochastic realizations 

and Particle Swarm Optimization (PSO) for parameter optimization. The approach is tested in a semi–synthetic case 

study based on a braided–river depositional environment. 

Keywords: History Matching, Geostatistics, Direct Sequential Simulation, Uncertainty Quantification, Particle Swarm 

Optimization, Adaptive Stochastic Sampling. 

1. Introduction 

Reservoir modelling is a crucial step in the 

development and management of petroleum 

reservoirs. An accurate reservoir model is one that 

honors all data at the scale and precision at which 

they are available. Information available to model 

the reservoir is continually updated over the course 

of field development. Integration of static and 

dynamic models is performed by modifying the static 

model in order to match the observed historical 

reservoir production data, using HM techniques. 

However, the integration of both types of data into 

reservoir modelling is a challenging task, as the 

relationship between hard data and production data 

is highly non-linear. The process of HM tries to 

address this problem by applying changes to the 

reservoir model in order to minimize a given cost 

function, responsible for the quantification of the 

mismatch between the observed production data 

(historical data) and the dynamic model response 

(simulated data). This introduces another problem 
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associated with HM. Multiple reservoir models 

(static or dynamic) can produce equally matched 

responses, making HM an ill-posed problem. 

Over recent years, several approaches have been 

developed to address History Matching of oil and gas 

reservoirs. Methods depending on data assimilation, 

like the Ensemble Kalman Filter (Evensen, et al. 

2007), gradual deformation (Hu, et al. 2001), 

probability perturbation (Caers & Hoffman, 2006) or 

stochastic sequential simulation and co-simulation 

(Mata-Lima, 2008), (Le Ravalec-Dupin & Da Veiga, 

2011) have been proposed. 

Other methods like Stochastic Optimisation 

algorithms, allow reducing computational times by 

sampling from the ensemble of best matched models 

in order to improve matches. Algorithms such as the 

Neighbourhood Algorithm (Sambridge, 1999), the 

Genetic Algorithm (Erbas & Christie, 2007), the 

Particle Swarm Optimisation (Mohamed, 2011) and 

Differential Evolution (Hajidazeh, et al. 2009) have 

been developed on recent years. By sampling only for 

the models that fit better according to the 

evolutionary principle, adaptive stochastic 

optimisation allows a reduction in computational 

costs. 

The present project proposes a new HM 

technique, coupling Traditional GHM methodologies 

with the integration of Adaptive Stochastic 

Sampling. The proposed methodology applies a 

GHM technique under uncertain reservoir conditions 

represented by geologically consistent reservoir 

zonation, based on fault presence and fluid 

production streamlines. The work explores the value 

of using a geologically consistent zonation 

methodology, associated with production wells in 

Geostatistical History Matched regions, coupled with 

adaptive stochastic sampling and Bayesian inference 

for uncertainty quantification and optimization of 

geological and engineering properties.  

This novel approach makes use of the Direct 

Sequential Simulation (DSS) (Soares, 2001) 

algorithm for generation of stochastic realizations 

and Particle Swarm Optimization (PSO) (Kennedy 

& Eberhart, 1995) for parameter optimization. The 

approach is tested in a semi–synthetic case study 

based on a braided–river depositional environment. 

2. Methodology Workflow 

Following the works on regionalization–based 

HM algorithms done by Hoffman & Caers (2005) and 

Mata–Lima (2008), the proposed methodology 

couples adaptive stochastic sampling with Zonation–

Based GHM. The proposed methodology is 

synthetized by the following workflow: 

First step (Zonation-Based GHM; Fig. 1): 

1. Regionalization of the reservoir area 

according to a given fault model and area of influence 

of the wells, resulting in a cube with a zone being 

assigned for each well or for a group of wells. 

2. Simulation of a set of permeability (�) and 

porosity (�) realizations through DSS, honouring the 

well data, histograms and spatial distribution 

revealed by the variogram; 

3. Evaluation of the dynamic responses for 

each of the realizations and calculation of the 

mismatch between the simulated response and real 

production data, using an objective function; 

4. Calculation of a correlation coefficient 

between each dynamic response and generation of a 

cube composed of different correlation coefficients 

per zone; 

5. Creation of a composite cube of � and �, 

with each region being populated by the 

corresponding realization with the lowest mismatch, 

calculated in step 3; 

6. Return to step 2, using Co–DSS and the 

cubes calculated in steps 4 and 5 as local correlation 

coefficient and soft data, respectively. The algorithm 

is expected to run up to a maximum number of 

iterations, or until a pre–defined mismatch value is 

reached. 
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Fig. 1. Zonation-Based HM Workflow (First step) 

Second step (Coupling with Adaptive 

Stochastic Sampling; Fig. 2): 

The second stage can be considered as an outer 

loop, encompassing the results obtained by the first 

step. At each iteration of the Zonation–Based GHM 

loop, a best � and � cube is found, along with their 

respecting correlation coefficient cubes. A process of 

matching relevant engineering and geological 

parameters will then occur, using Bayesian inference 

and Adaptive Stochastic Sampling. The second 

phase runs for a maximum number of iterations. 

For this work, the parameters considered for 

perturbation were the variogram parameters being 

used to generate the geostatistical realizations on the 

inner GHM loop, histogram perturbation and fault 

transmissibilities. Other perturbation parameters, 

geological or engineering, can be used with the same 

proposed procedure. 

 
Fig. 2. Coupling with Adaptive Stochastic Sampling. (Second step) GHM is shown in detail in Fig. 1. 

2.1. Dynamic evaluation 

2.1.1. Objective Function 

The objective function is formulated as a 

mathematical expression that measures how close a 

problem solution (simulated data) is towards an 

optimal value (observed data). The definition of such 

a metric is critical in order to achieve convergence in 

the iterative procedure. The most commonly used 

objective function for HM is the least square norm, 

which calculates a measure of the discrepancy 

between the simulated and observed value, returning 

a “mismatch” value, � . The least squares norm 

formula to be used in the present work is defined as: 

� = �	
 ∑(�,��� − �,���)2
2�2

�

�=�
 (1) 

where �,��� and �,��� are, respectively, the 

observed and simulated values of a given variable at 
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timestep �. �2 is the error, or standard deviation, 

associated to the measurement of a the same variable 

at the same timestep. 

2.1.2. Correlation coefficient 

Due to the importance of the correlation 

coefficient in the proposed GHM workflow, it is 

crucial to make sure its value mimics the misfit value 

obtained by the objective function. Meaning, a 

process that integrates calculations of misfit and 

correlation coefficients should guarantee that when 

calculated, these values change symmetrically and in 

the same proportion, under different configurations 

of observation data curves. This issue was also 

tackled, within the scope of this work, with the 

development of a new approach to calculate a 

correlation coefficient based on the misfit value. The 

following step–by–step list describes the calculation 

of the correlation coefficient being used by the GHM 

algorithm. 

 

1. For all timesteps and for the production variable to be matched, calculate a response difference, and the 

corresponding error, respectively ∆��� and ∆�����, according to the following: 

 ∆��� = ∣(�,���) − (�,���)∣ (2) 

 ∆�����= ��2 − ∆��� (3) 

2. Calculate the final deviation towards observed data for a given timestep, ∆��� , according to: 

 ∆���= {�,��� − (∆��� + ∆�����) 	" �,��� ≥ ∆��� + ∆����� 
0 	" �,��� < ∆��� + ∆�����

 (4) 

3. Normalization of the value obtained in step 2 according to the following: 

 
&� =

⎩{⎨
{⎧1 − ∆���(∆��� + ∆����� + ∆���) 	" ∆��� ≤ ∆����� + ∆��� 

0 	" ∆��� > ∆����� + ∆���
 

(5) 

4. The final correlation coefficient & for a given response is obtained by: 

 & = ∑ &�/
�=11  (6) 

 

2.2. Zonation–Based GHM 

Zonation methodologies (also known as 

regionalization or compartmentalization) are a 

common approach in reservoir engineering and HM 

to reduce the number of parameters of a given 

reservoir description. One of the objectives of this 

work was to explore different regionalization 

methodologies and their influence on the HM quality 

and convergence. The purpose behind this study was 

to arrive at a better zonation methodology to apply 

to the coupling stage. Fig. 3 is a presentation of the 

explored zonation methodologies.

 

Global Zonation Circular Zonation 

  

Square Zonation Voronoi Zonation 

Fig. 3. Explored Zonation methodologies 
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2.2.1. Fault and Streamline–based Zonation 

After observing the results obtained from the 

running of several GHM loop using the 

regionalization patterns described in Chapter 2.2 

(the reader is encouraged to the main document for 

a view of the results), a hybrid like regionalization 

pattern was adopted in order to capture the accuracy 

obtained by the different regionalization methods. 

 For this, a regionalization method containing 

aspects of geological consistency, fluid flow paths 

along with their area of influence and fault zonation, 

was proposed. This regionalization method was 

primarily considered to improve mismatch results on 

the GHM stage, while maintaining a degree of 

geologic consistency during parameter perturbation. 

Fig. 4 illustrates the selected regionalization pattern 

to be used in the coupling stage of the algorithm. 

 

Fig. 4. Fault and Streamline-based Zonation 

Within the scope of this work, uncertainty was 

assumed to exist in the horizontal and vertical ranges 

and on the composition of hard data histograms for 

porosity and permeability. Uncertainty was also 

assumed on fault transmissibilities of the model. 

Tab. 1 summarizes the selection of prior distribution 

ranges for the coupling stage of the algorithm.

 

Tab. 1. Selection of prior distribution ranges. 

Property Parameter Variable Name Distribution Type Prior Range 

Porosity 

Horizontal. Range $pororange1 Discrete Uniform [40, 80] 

Vertical. Range $pororange2 Discrete Uniform [10, 30] 

Facies 2 Proportion $poro_fac_2 Uniform [0.0, 0.3] 

Facies 1 Mean $poro_mean_1 Uniform [0.15, 0.19] 

Facies 2 Mean $poro_mean_2 Uniform [0.19, 0.23] 

Permeability 

Horizontal. Range $permrange1 Discrete Uniform [40, 80] 

Vertical. Range $permrange2 Discrete Uniform [10, 30] 

Facies 2 Proportion $perm_fac_2 Uniform [0.7, 1.0] 

Facies 1 Mean $perm_mean_1 Uniform [–1.5, 1.5] 

Facies 2 Mean $perm_mean_2 Uniform [1.5, 3.0] 

Fault Transm. All Fault Transm. $ftrans (2,3,5,6,7,8,9) Uniform [0.0, 1.0] 

 

3. Results and discussion 

3.1. Coupling with Adaptive Stochastic 

Sampling 

As previously mentioned on Chapter 2.2.1, for the 

coupling of GHM with Adaptive Stochastic 

sampling, fault and streamline based zonation was 

selected to be integrated on the GHM loop. The 

inner zonation–based GHM loop was set to run 5 

simulations at every iteration. For the Adaptive 

Stochastic Sampling outer loop, Particle Swarm 

Optimization was selected to optimize the perturbed 

parameters depicted on Tab. 1, over a total of 223 

iterations. A total of 1115 fluid flow simulations were 

ran. From the observation of the misfit evolutions 

for FIELD data (Fig. 5), it is possible to interpret 

that convergence occurred at around iteration 100, 

when 4 of the 5 lowest misfits were obtained. 
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Fig. 5. Misfit Evolution of the Zonation–based GHM, coupled with Adaptive Stochastic Sampling 

Fig. 6 shows the fluid flow response for the best 5 iterations of the run. 

  

 
Fig. 6. Fluid flow response for FOPR (Top Left), FGPR (Top Right) and FWPR (Bottom) for GHM coupled with 

Adaptive Stochastic Sampling 
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Fig. 7 shows the Parameter vs Misfit plots for the 

perturbation of fault transmissibilities. On some of 

the parameters, a dispersion of values can be 

observed, along the lower values of misfit. However, 

it is possible to interpret the concentration of most 

frequent parameter values for lower misfit iterations, 

namely on faults 3, 5, 6, with remaining fault 

transmissibility values being too sparse to assign a 

specific interval with a degree of confidence. 

 

$ftrans2 $ftrans3 $ftrans5 

   

 

$ftrans6 

 

$ftrans7 $ftrans8 $ftrans9 

   

Fig. 7. Fault Transmissibility parameter value (y axis) vs Misfit (x axis)     

Fig. 8 shows the concentration of parameter 

values for horizontal and vertical permeability 

ranges over the course of the iterations. A 

concentration of lower values for horizontal 

permeability ranges ($permrange1) is observed, 

while for vertical ranges, the spread of parameter 

values, within the assumed prior range, 

corresponding to lower misfits, is much higher.

 

$permrange1 $permrange2 

  
Fig. 8. Permeability Range vs Misfit (Left – Horizontal Range, Right – Vertical range) 
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Fig. 9 shows a top view of the Permeability field for the best simulation (Iteration 91, simulation 5). 

 

Fig. 9. Top view of the Best Permeability realization (Iteration 91, Simulation 5) 

Regarding histogram perturbation for 

permeability, Fig. 10 shows the concentration of 

parameter values obtained for histogram 

perturbation, over the course of the iterations. There 

is a concentration of values for the proportion of 

Permeability Facies 2 occurring at higher values of 

the assumed prior distribution range. Permeability 

means for Facies 1 does not display an identifiable 

pattern, meaning that probably the perturbation for 

this parameter does not have a relevant enough 

effect on dynamic response, for the sampling 

algorithm to detect. As for Permeability means for 

facies 2, a concentration of parameter values at the 

top half part of the parameter distribution interval, 

is observed, on values ranging from 2.4±0.3.

 

$perm_fac_2 $perm_mean_1 $perm_mean_2 

   

Fig. 10. Permeability Histogram Perturbation (y axis – parameter value) vs Misfit (x axis), (Left – Facies 2 Proportion, 

Middle – Facies 1 Mean, Right – Facies 2 Mean) 

For variogram parameter perturbation of 

porosity, Fig. 11 shows the concentration of 

parameter values for horizontal and vertical porosity 

ranges over the course of the iterations. A 

concentration of lower values for horizontal porosity 

ranges ($pororange1) can be observed, while for 

vertical ranges, the concentration tends towards 

higher values of the adopted perturbation 

distribution.

 

$pororange1 $pororange2 

  
Fig. 11. Porosity Range vs Misfit (Left – Horizontal Range, Right – Vertical range) 
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Fig. 12 shows a top view of the Permeability field for the best simulation (Iteration 91, Simulation 5). 

 

Fig. 12. Top view of the Best Porosity realization (Iteration 91, Simulation 5) 

Regarding histogram perturbation for porosity, 

Fig. 13 shows the concentration of parameter values 

obtained, over the course of the iterations. There is 

a concentration of values for Porosity Facies 2 

proportions occurring at the mid–region of the prior 

distribution interval. Porosity means for Facies 1 

converges towards values around 0.15±0.05, while 

Porosity means for facies 2, shows a concentration of 

parameter values at the top half part of the interval, 

for values between 0.21 and 0.22. 

 

$poro_fac_2 $poro_mean_1 $poro_mean_2 

   

Fig. 13. Porosity Histogram Perturbation (y axis – parameter value) vs Misfit (x axis) (Left – Facies 2 Proportion, 

Middle – Facies 1 Mean, Right – Facies 2 Mean)  

4. Conclusions and Future Work 

The motivation behind the presented work was 

to contribute with an integrated workflow regarding 

GHM, by proposing an algorithm capable of coupling 

a traditional GHM method with Adaptive Stochastic 

Sampling, addressing the local match of production 

data, under a zonation-based methodology. A 

workflow was presented, showing very positive and 

promising results with a possibility to be extended 

and applied to other case studies, different 

parametrization selections or alternate 

regionalization methodologies. 

The advantages of the proposed methodology are: 

• Addressing perturbation in a geologically 

consistent manner; 

• Respecting fluid production flow pattern, 

by usage of production streamlines; 

• Reduced parametrization of static 

properties with the discretization of the 

reservoir; 

• Ability to apply perturbation of static 

and engineering parameters and 

quantifying their uncertainty, while 

integrating a traditional GHM process; 

• Ability to provide better results than 

other standard regionalization methods, 

under less time; 

• Ability to generate multiple matched 

models that can be used to forecast 

production. 

The application of the proposed methodology 

showed promising results, with the achieving of 
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multiple History Matched models with considerably 

low misfits (lowest misfit of 32, on a 96 timestep 

run). The creation of an ensemble of multiple history 

matched models by solving the ill–posed calibration 

problem, allows the prediction of reservoir behavior 

with a degree of uncertainty. Nevertheless, a 

limitation of the proposed methodology is its 

dependency on the right choice of prior ranges, which 

is essential for good optimization results. 

The successful application of the proposed 

methodology to a challenging semi-synthetic 

reservoir case study delivers good perspectives for its 

application to real cases. Further research on this 

area could be focused towards performing forecasting 

using the proposed methodology, applying other 

types of parameter perturbation, alternate methods 

of reservoir zonation, integration of the methodology 

with facies perturbation or seismic inversion. 
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